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Abstract
Deployment of accurate black-box models in high-
stakes decision contexts has led to the advent of
explanation methods which are designed to en-
gender trust in these models, reassuring the user
that the model is making decisions appropriately.
However, to date, there is no single quantitative
method to evaluate explanation methods. In this
paper we define fidelity as the degree to which the
explanation accounts for the model output for the
explained sample, and argue that the fidelity of an
explanation is the most important feature of any
explanation. We analyse and compare the fidelity
of explanations from the LIME and Layer wise-
Relevance Propagation methods, demonstrating
that fidelity provides compelling justification for
selecting the best explanation method for a model.

1. Introduction
The continued success of machine learning models, and
deep learning models in particular, in classification and
regression problems across a wide range of domains has
prompted reflection about the challenges of using such mod-
els without sufficient insight as to how the model output is
related to the input features (Rudin, 2019). Such insight
engenders trust that the model has learned significant and
meaningful relationships between the input data and the re-
sponse variable, and also enables the model user to ’debug’
the modelling approach in cases where the model perfor-
mance is not satisfactory. The ability to explain the output
of a model is especially valuable in high stakes decision con-
texts, such as medical diagnosis, making parole decisions or
fraud detection settings (Lipton, 2018; Collaris et al., 2018;
Mittelstadt et al., 2019; Julia Angwin, 2016).

The appeal of explanation techniques is clear: high-accuracy
black-box models can be deployed in high risk settings
whilst still allowing model users to understand the decision-
making process, and in doing so play an active part in that
process. In practice, things are not as simple. Many methods
to explain the predictions of black-box models have been
proposed (Molnar, 2018), but for each method there are
different mechanisms for generating explanations, different
approaches to evaluation, and even different definitions of

what an explanation is, if this is defined at all. These impor-
tant technical differences can be difficult to communicate
to end-users (Collaris et al., 2018). Often, an explanation
method is justified by an appeal to qualitative factors, such
as whether the explanation corresponds to a human under-
standing of the problem, or is easy to interpret by humans
(Jacovi and Goldberg, 2020; Lipton, 2018; Ribeiro et al.,
2016). While these are important features, quantitative mea-
sures are necessary to ensure that an explanation does in
fact account for the behaviour of the model.

In this paper, we argue that the most important question
to answer when attempting to explain the predictions of
a model is whether the explanations from the selected ap-
proach account for the behaviour of the model. In order to
do this, one must clearly state what an explanation is, and
have a quantitative method with which to assess how accu-
rate the explanations are in relation to the model. We define
explanations as causal statements linking the inputs and out-
puts of a model, and propose fidelity to assess the accuracy
of these statements. Since an ”explanation” which is not
faithful to the model is essentially a false statement about
the model behaviour, fidelity is therefore the fundamental
measure that all explanation methods should be evaluated
against, without which all the other benefits of explaining
models are lost. To illustrate our argument, we calculate
the fidelity of explanations from two methods applied to a
neural network, trained on a simple, synthetic data set, and
demonstrate that this calculation allows for a clear, princi-
pled evaluation of, and choice between, explanations.

2. Motivation
Consider the simplified synthetic two dimensional, binary
classification data set as shown in Figure 1a, and in particu-
lar the four labelled points, as shown in Table 1. Intuitively,
the explanation for point A being a member of class 0 is
that the x1 value is too low; and this intuition is the same
for point C, but in reverse: if x2 were larger, the probabil-
ity of point C being a member of class 1 would increase.
For point B, the classification would change if either x1 or
x2 was less than 5, while for point D both x and y would
have to increase to change the classification from class 0
to class 1. The intuitive explanation for these points is a
counterfactual, causal one: the most important feature (or
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Figure 1. The data set motivating this discussion is pictured in
Figure 1a, showing a mixture of bernoulli binary classification
problem. The decision contours for the 1-layer neural network M
are shown in Figure 1b

Coordinate Lime LRP δy

A: (2.5, 9) (0.31, 0.07) (-1.27, 3.24) (0.60, 0.04)
B: (9, 9) (0.21, 0.19) (1.17, 1.11) (0.63, 0.57)
C: (9, 2.5) (0.06, 0.33) (-3.95, 0.71) (0.02, 0.68)
D: (2.5, 2.5) (0.18, 0.14) (-1.09, 0.71) (0.01, 0.08)

Table 1. The coordinates A - D show the variation between LIME,
LRP and δy. For points A, B or C, δy suggests that changing either
x1 or x2 will significantly change the model output, while the
output for point D will be unaffected by a change in either variable
independently. This can also be concluded from the decision
contours of M in 1b. With regards to a causal intuition that the
most important features to M for a sample are those which would
effect a larger change in the model output if they were changed (as
presented in 2), we can see that LIME and δy are attuned to this
intuition, while LRP is quite different.

features) is the one which, if it were different, would result
in the greatest change to the model output. Suppose a user
receives the LIME and Layerwise Relevance Propagation
(LRP) explanations from Table 1; how should they choose
between them? LIME seems to bear more relation to our
intuition, but on the other hand perhaps the model is acting
counterintuitively - certainly, one of the methods is less ac-
curate than the other, since they do not agree on most of
the cases. In a high stakes setting, selection between these
results could be the difference between deploying a biased
model on false evidence, or acting to ensure it is not de-
ployed before further scrutiny. Crucially, we must separate
our intuition about the more plausible explanation that x1 is
more important to the decision when x2 > 5 and vice versa,
from our causal reasoning underpinning our explanations
- when x2 > 5, if x1 were different, then the model output
would change. If this causal intuition can be quantified, then
we can compare our explanation methods in a meaningful
way.

3. Related Work
3.1. Evaluating explanations using fidelity

Jacovi and Goldberg (2020) summarise the literature on
faithfulness (in a natural language processing context) as
resting on one of three assumptions: that the explanation
model is faithful if its outputs closely match the outputs of
the true model (Model assumption); that a faithful expla-
nation method is one which has similar outputs for similar
inputs (referred to as the ”Prediction” assumption, this is
similar to robustness, proposed by Alvarez-Melis (2018));
and finally the ”linearity assumption” which assumes that
“certain parts of the input are more important to the model
than others”, and that the inputs are independent with respect
to their importance in the model. While these assumptions
all demonstrate valuable features of explanations, we argue
that both the ”Model” and the ”Prediction” assumptions are
insufficient for evaluating explanation fidelity.

Ribeiro et al (2016) evaluate the fidelity of LIME using the
”Model” assumption by applying it to interpretable mod-
els, demonstrating that LIME is able to recover the most
relevant features (as determined by model coefficients) in
the test models in 90% of the predictions. However, this
only demonstrates that LIME can recover the most relevant
features of a linear model and a piece-wise linear model,
rather than the most relevant features to any model. More
generally, the assumption that if two models are shown to
have similar predictive performance, they have similar ’ra-
tionale’ is not sufficient to demonstrate explanation fidelity
to M , because in this case an explanation is actually a state-
ment about the surrogate model: at best, it is a claim that
”feature k was important to M in making the prediction y
about input x because a linear model M ′ which has similar
inputs and outputs (locally) to M used k”, but this claim
effectively denies the Rashomon effect by assuming that the
same explanation applies to any models which return the
same or similar outcomes for the same inputs.

The ”Prediction” assumption covers the work of Alvarez-
Melis and Jaakkola (2018), who argue that explanations
should be robust to small perturbations in input by satisfying
a distance inequality, and raise the question of whether
an explanation method should be robust if a classifier is
not robust. Our definition of fidelity answers this question
with an emphatic yes; a faithful explanation should be a
representation of how the output of the model changes with
respect to its input, and therefore a faithful explanation
method should be robust to the same degree as the model
itself.

Techniques using the ”Linearity assumption” to assess the
fidelity of explanations include using a toy data set where
ground-truth relevance is known, and comparing the succes-
sive removal or addition of features with either the model
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performance with reference to ground-truth labels, or the
model outputs (Arras et al., 2019; Hooker et al., 2019;
Samek et al., 2016; Montavon et al., 2018; Arras et al.,
2016; Adebayo et al., 2018; Ancona et al., 2017). While our
definition of fidelity shares in common with this assumption
the belief that ’parts of the input are more important than
others’, we dispute the requirement that the contributions
from different inputs are independent, with an example in
4.3.1. Furthermore, most of these methods base their eval-
uation on the change in predictive output (or even change
in predictive accuracy). This reliance on the ground-truth
labels precludes the explanation of models with poor perfor-
mance, since it would be unclear whether the explanations
are faithful to the model if both the explanation and the
model are incorrect on classifications (this critique also ap-
plies to the ”Model” assumption). It also unnecessarily
discretises the outputs of the explanation method, resulting
in a more coarse evaluation. On the other hand, evaluat-
ing fidelity based on a toy data set avoids this possibility
(e.g. Arras et. al (2019)), but whether this successfully
extrapolates to real data is unclear.

3.2. Counterfactuals

Counterfactual explanations are specifically designed to an-
swer the “what if things had been different?” question, by
providing counterfactual examples for the sample to be ex-
plained, and are therefore causal statements about a model
(Wachter et al., 2017; Martens and Provost, 2014; Laugel
et al., 2018). Counterfactual explanations benefit from be-
ing model agnostic since they only require an optimization
problem to be solved to identify counterfactual examples
(Wachter et al., 2017). They also align with wider research
about how humans interpret explanations: as Mittelstadt,
Russel and Wachter (2019) argue, “human explanations are
contrastive”. However, a counterfactual example may lose
it’s explanatory power if it is not appropriate for the sample
space (e.g. “this animal would not be classified as a dog
if it had 17 legs”). In their discussion, Laugel et. al(2019)
propose justification requirements which counterfactual ex-
planations should satisfy in order to be acceptable, based on
a topological definition of path connectedness in the data
set, but this concern attempts to address both the fidelity of
an explanation to the model and sample being explained,
as well as the relationship between the explanation and the
underlying data, and Laugel et. al (2019) go so far as to
state that “there is no existing satisfying way to provide
post-hoc explanations that are both faithful to the classifier
and to ground-truth data”. In this paper, we focus only on
the validity of explanations with respect to the model. On
the other hand, counterfactual approaches may suffer from
the Rashomon effect, where multiple differing explanations
are possible (Molnar, 2018), although this can be avoided
to some degree depending on the method used to generate

counterfactuals (Wachter et al., 2017). Finally, counterfac-
tual approaches can be challenging if the input space is
high-dimensional, for example with categorical features at
multiple levels, and different approaches may be required
for different data types (Mittelstadt et al., 2019).

3.3. Causal explanations

While an in-depth discussion of this philosophy is outside
the scope of this paper, we are mindful of Miller’s (2017)
warning that understanding and evaluating explanations
should not be the remit of machine learning researchers
alone 1. Most relevant to this paper is work on causal ex-
planations through counterfactuals (Lewis, 2013; Scriven,
1975), and we take Woodward’s (2003) position that ex-
planations must answer “w-questions”, that is, “what-if-
things-had-been-different?”. Within the machine learning
domain, Watson and Floridi (2019) use a game-theoretic
approach to develop a framework for generating optimal
explanations for a given prediction, drawing on the causal
interventionism of Pearl (2009). Zhao and Hastie (2019)
demonstrate a link between partial dependence plots and
Pearl’s do-calculus (2009), but in this case the causal inter-
pretations are with respect to the underlying inputs X and
true outputs Y , rather than causal interpretations of predic-
tions from the model. Partial dependence plots (PDP) (and
their more recent descendents Individual Conditional Ex-
pectation (ICE) plots and Accumulated Local Effects (ALE)
plots) (Friedman, 2001; Goldstein et al., 2015; Apley and
Zhu, 2016) are visual methods which attempt to explain
model behaviour by perturbing input features to M and plot-
ting the results. While PDPs do this globally, marginalising
out the effects for a single variable across the data set, ICEs
and ALEs accumulate sample-wise perturbations. These
methods all share the shortcoming that more than two fea-
tures are impossible to visualise, and hence each plot can
only summarise a part of the model behaviour.

1These inmates, at least, will not take charge of the asylum!
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4. Methods
4.1. Synthetic data generation method and modelling

approach

The data is generated using a mixture of Bernoulli distribu-
tions, y ∼ B(1, p = f(X)):

f : X →



0 < X ≤ 1 p = 0

1 < X ≤ 2 p = 0.1

2 < X ≤ 4 p = 0.2

4 < X ≤ 5 p = 0.5

5 < X ≤ 7 p = 0.8

7 < X ≤ 8 p = 0.9

8 < X ≤ 10 p = 1

We model the data generating mechanism with a simple,
one-layer neural network consisting of 8 nodes with Relu
activation and a Softmax layer, using the Tensorflow library
(Abadi et al., 2015).

4.2. Explanation methods

1. Locally-interpretable Model-agnostic explanations:
LIME (2016) is a framework to identify an ’inter-
pretable data representation’ of the model input fea-
tures, and an interpretable surrogate model (this could
be a linear model, decision tree, or falling rule lists)
which finds a tradeoff between the complexity of the
surrogate model (number of coefficients, depth of trees
etc.) and the ”local fidelity” of the surrogate to the
original model on the interpretable data representation
- defining fidelity as the distance between the prediction
probabilities of the original model and the surrogate
model.

2. Layerwise Relevance Propagation:This method propa-
gates a prediction backward through a neural network,
using the weights and activation values to compute the
most important input values for a given input. (Mon-
tavon et al., 2019) The propagation is a conservative
procedure, in that the prediction is conserved as it is
redistributed to the lower layer neurons.

4.3. Calculation of Explanation Fidelity

Given a d-dimensional input space X , output space Y , and
a model M : X → Y , a feature-attribution explanation
method is a function E : (x,M) → e, where e is a d-
dimensional vector of weights such that ei denotes the ’im-
portance’ or ’contribution’ of xi with respect to the model
output y. We argue that the only meaningful interpretation
of ei is a causal one: if xi had a different value, y would be

Figure 2. Contour heat maps for the output of LIME (top row)
and LRP explanation methods (bottom row) across x1 (first col-
umn) and x2 (second column), from most important (red) to least
important (blue). LIME shows explanations approximately cor-
responding to the intuition described in 2 and the perturbation
contours in in 4, where x1 is more important when x2 > 5 and
vice versa. There is significantly less variation in the output from
LRP, with a small region of high importance when x1 is near 10,
and x2 is near 5, and little correspondence with the perturbation
contours in 4

different. 2 In order to measure this for individual features,
we propose the following:

4.3.1. DEFINITION

Model-based perturbation value: Given a model M and a
sample x ∈ Xd, then for i = 1, . . . , d, we create x′i as a
permutation of x in the ith feature. Since the ith element
can be permuted in k distinct ways, let x′i,j denote the jth
permutation, such that an estimate of the change in y over
all possible permutations of the ith element is given by

δyi =

k∑
j=1

d(M(x),M(x′i,j))

k
(1)

where d is an appropriate distance metric. Model-based
perturbation has much in common with counterfactual meth-
ods, but the difference here is in our purpose to evaluate
explanations, rather than to provide them. As noted in the

2Note that y may not be continuous for all models, or in a
classification setting for example. In such situations, a discrete
set of high-cardinality, a prediction probability space, or even a
post-processing calibration step may be appropriate. Further work
is required in this area.
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Figure 3. Scatter plots for x1 and x2 showing the relationship be-
tween δyxi , the model perturbation values, and the output from
LIME and LRP. For the purposes of visual clarity, the LRP and
LIME values were normalised since they are essentially dimension-
less ’importance’ values, but δyxi values are not normalised since
they represent the average change in prediction probability for M
when xi is perturbed and therefore are meaningful in relation to
the problem. The dashed line x1 = x2 is plotted for reference.

related work section, model-based perturbation may not be
practical as an explanation method: high-dimensional input
spaces make it difficult to calculate or ”explanations” can
be generated which do not make sense within the domain.
However, our goal is less ambitious: given an explanation
e as defined above, we can assess the fidelity of this ex-
planation by measuring the correlation between ei and δyi,
essentially asking how well it answers the ”w-question”.
In this paper we use the Pearson Correlation Coefficient
ρX,Y = cov(X,Y )

σXσY
to calculate the correlation between the

model-based perturbations and the explanation values from
LIME and LRP.

In using model-based perturbation to calculate fidelity, we
therefore accept the ”linearity” assumption (Jacovi and
Goldberg, 2020) insofar as stating that some parts of the
input have more effect on the model output than others.
However, it is not clear that feature independence neces-
sarily follows. While any explanation method which is an
injective function X → IR implies independence of input
features, there is no reason as to why this should be the
case in general. δyi as defined above could be calculated
for interaction terms between features xi and xj for exam-
ple, but since model-based perturbation is for evaluating
e, this would be necessary only when e explicitly makes a
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Figure 4. Contour heat maps for the perturbation scores of M in
x1 and x2,

statement about xi and xj covarying.

5. Results and Discussion
The results in Table 1 show that our causal intuition about
points A - D in the data set shown in Figure 1 1a aligns with
the average change in model output, δy. We now present a
more in depth analysis across the whole test set, as shown in
Figure 2 in order to evaluate the fidelity of LIME and LRP
for M on this data set. While in general, we propose model-
based perturbations as an evaluation method, the simplicity
of this experiment allows us to use perturbation analysis
to generate faithful explanations for M , since they directly
answer the question of “what-if-things-had-been-different”,
and can be computed efficiently in this case. The contour
maps show that when x2 > 5, x1 has the larger score, and
similarly for x2 when x1 > 5.

To explain the predictions of M , the LIME framework fits a
linear model to a sample of inputs and predictions around
the point to be explained, and returns the coefficients as
an explanation of the prediction. LIME uses the ’Model
assumption’ (Ribeiro et al., 2016; Jacovi and Goldberg,
2020), which we have argued above is not sufficient for
model fidelity. Despite this concern, the outputs of LIME
are quite faithful to the the model output in this example;
x1 is most important when x2 > 5, and vice-versa, and the
contour map shows a graduated change in importance which
is in line with the decision contour map for M . The PCC
between LIME and the pertubation score is 0.85 for x1, and
0.83 for x2.

From the LRP algorithm, we deduce that the output is a
point-wise decomposition of which “conserves class rel-
evance on a layer and node basis”. In the original paper
(Bach et al., 2015), justifications for the value of LRP in-
clude removing the “most relevant“ pixels from MNIST
images, noting that “on average over all digits, flipping the
highest scoring pixels at first results in a fast decline of the
prediction for the true class, and at some point another class
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is predicted.”, so we can conclude that the authors consider
LRP explanations to answer the w-question, and further-
more that this explanation method assumes Jacovi’s (2020)
“Linearity Assumption”, that each input is independent as
to its effect on the model output. The LRP contour maps
for x and y across the test set shows that LRP in fact gives
only a small number of differing explanations across the
data set, and the PCC score between the LRP values and
perturbation values is -0.29 for x, and -0.45 for y. While
these values could in fact indicate a negative linear corre-
lation, the scatter plots in Figure 3 show that there is no
meaningful relationship.

In this experiment, we can conclude that the LIME model
provides a more faithful explanation model for M than
LRP, as evidenced by the PCC scores above and scatter
plots in Figure 3. While we use the Model perturbation
method as a form of explanation in this example, we again
acknowledge that perturbation methods run in to problems
in higher dimensional spaces, and state that in general the
method we propose is for evaluation of fidelity, rather than
explaining each point.

6. Conclusions
We argue that explanations for the predictions of a model
should be interpreted as causal statements about how a
model maps its inputs to its predictions, and that expla-
nations should be evaluated as to how accurately they can
provide a causal explanation for model behaviour ahead
of any other evaluation - this is the fidelity of the explana-
tion method. In this paper, we present a model trained on
a simple synthetic data set, calculate faithful explanations
using perturbations of the input data, and compare these
with explanations from LIME and Layerwise Relevance
Propagation. We discuss the results of this experiment in
the context of related work about explanation fidelity and
causal interpretations of explanations. While a formal defi-
nition of fidelity which is applicable to all models and data
types (images, text, tabular etc.) remains a challenge for
the research community, this paper demonstrates the im-
portance of attempting to assess fidelity of explanations as
causal statements about a model in order to validate the
explanations.
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